Δcps1 Coccidioidomycosis (Valley Fever) Vaccine for Dogs

Marc Orbach, PhD (Fungal Genetics); Lisa Shubitz, DVM; John Galgiani, MD (Infectious Disease)

Plant Sciences, Animal and Comparative Biomedical Sciences, and Valley Fever Center for Excellence, The University of Arizona
Defining the Problem
Valley Fever Basics

- Fungal infection acquired by inhaling spores from environment
 - Dirt, rodent holes, dust storms, generally breathing air
 - Pima, Pinal, Maricopa counties - “Valley Fever Corridor” accounts for ~ 70% of all cases (dog and human!)
- Infects all mammals, occasional reptiles, no birds
- Causes disease in
 - Dogs
 - Cats
 - Horses
 - Non-human primates
 - Llamas and alpacas
 - Other exotic species (zoo animals – Tucson, Phoenix, San Diego)
 - Marine mammals – west coast
Valley Fever in Dogs

• Affects 6-10% of dogs in the “Valley Fever Corridor” annually
 • Estimate 60,000 dogs per year in AZ alone, costing AZ dog owners about $60 million in costs of diagnosis and treatment
 • Dogs in CA, NM, TX, UT, NV affected at lower rates (unknown) and dogs who travel here with winter visitors and for dog shows or performance sports are at risk.

• Dogs are at greater risk of complicated disease than humans
 • Complicated disease includes unresponsive/progressive pneumonia and disseminated disease.
 • 1 publication of a small number of dogs estimates 25%; this is consistent with clinical impression.
 • Treatment of dogs is months to years, depending on severity of disease and whether it has recurred.
Δcps1 Vaccine

• The vaccine is a live “mutant” strain of *Coccidioides* that doesn’t make animals sick
• Created by removing (“knocking out”) a gene that is required by the valley fever fungus to cause disease in animals
• We don’t know what this gene does in the fungus or why it is essential for causing disease
• The name of the gene is CPS1, so the mutant strain without the gene is called Δcps1 (*Delta-cps1*)
• It would be virtually impossible for this strain to revert back to a disease-causing version
Δcps1 Mutant Strain in Mice

- Tested in C57BL/6 and BALB/c mice
 - Both very susceptible strains, and BALB/c are hard to vaccinate effectively
- Studied extreme avirulence in “NSG” mice
 - These mice are missing almost all of their immune system, especially the portions essential to resolve a regular valley fever infection
Δcps1 Mutant Strain in Mice

- When we infected BALB/c and C57BL/6 mice with 10-100X lethal doses, they did not get sick.
- Microscopic examination showed degradation and clearance of mutant strain from lungs within days.

- When we infected NSG mice with a 50-fold lethal dose for the other two mouse strains, they did not get sick.
 - NSG mice would die from even one spore of regular valley fever fungus!
 - This has important implications for SAFETY of this strain as a vaccine in dogs or humans.
Δcps1 Vaccine in Mice

- Vaccinated C57BL/6 and BALB/c mice with the Δcps1 and infected them with the regular “virulent” valley fever fungus
- Two types of studies
 - Short term fungal burden (two weeks) and then culture the lungs and count the number of fungal colonies in the lungs
 - Survival over a period of 4 weeks, followed by counting the residual number of colonies in the lungs of the mice that lived
Quantitative lung burden in vaccinated C57BL/6 mice

- Mice were vaccinated with Δcps1 spores either intraperitoneally (IP) or subcutaneously (SC)
- Control groups vaccinated with a known protective recombinant antigen (Chim Ag) or placebo (Adj only)
Survival of BALB/c mice following lethal challenge after vaccination

- Highly susceptible BALB/c mice were vaccinated with Δcps1 spores either intranasally (IN) or subcutaneously (SC).
- Control groups vaccinated with a known protective recombinant antigen (Chimeric Ag) or placebo (Adj only).

![Graph showing survival rates of BALB/c mice vaccinated with Δcps1 spores or control antigens over 30 days.](image)
Residual lung burden in BALB/c mice

- Average fungal burden for both groups was <1000 CFU
- 5 mice vaccinated IN and 3 mice vaccinated SC had undetectable fungal burdens
How Do We Get From Mice to Dogs?

• Development of the vaccine from here requires
 • Additional laboratory studies in mice to look at longer term survival (6 months)
 • Studies to be able to determine if dogs are responding to the vaccine without waiting for them to be infected (underway with funds in the Companion Animal Fund)
 • Draw a blood sample from a vaccinated dog
 • Separate the white blood cells and test them to see if they are producing an “immune response” to the vaccine
• Formulation of a vaccine – mutant strain plus stabilizers, liquid vs. freeze dried product, shelf life
 • This is what goes in the bottle
 • Estimate 12-18 months of work, unless we are really lucky
How Do We Get From Mice to Dogs?

• Manufacture the vaccine in the presumed final formulation in bottles that can be tested for shelf life and effectiveness

• USDA licensing
 • License the manufacturing plant
 • Conditionally license the vaccine
 • Safety study – inject dogs (community) with the vaccine and observe for adverse reactions
 • Efficacy study – vaccinate two groups of dogs (Δcps1 and placebo) and monitor them for a year to determine if the number of dogs in the vaccine group get less valley fever than the placebo dogs
 • This study requires 500 dogs total and half of them are likely to benefit immediately from being in the study by becoming immune
How Much Will It Cost?

- Remainder of mouse studies and vaccine formulation
 - Estimate $100,000-$130,000 (UA campus)
- Manufacturing and licensing
 - ?
 - Depends on whether we have to start a company of our own to manufacture the vaccine or whether a Contract Manufacturing Organization is willing/able to grow the fungus for the vaccine and do the USDA licensing
 - Could cost $2 million if we have to start from scratch
- Safety and Efficacy trials
 - Estimate $100,000-$150,000
 - I hope I am right! These are labor intensive without a lot of materials; cost may depend on ability of local vets to help gratis
In Summary . . .

• I think this vaccine could work and have few adverse effects
• Cost of development is a big obstacle and national or federal sources of funding are a low likelihood
 • Local fundraising
 • Angel investors?
• Will take 3-5 years to licensing once we have identified funds to go forward with the work
• Anticipate it will benefit dogs enrolled in the development studies
• In the long run, could save lives and millions of dollars in veterinary care for dogs in Arizona